National Repository of Grey Literature 5 records found  Search took 0.00 seconds. 
Stochastic Differential Equations with Gaussian Noise
Janák, Josef ; Maslowski, Bohdan (advisor)
Title: Stochastic Differential Equations with Gaussian Noise Author: Josef Janák Department: Department of Probability and Mathematical Statistics Supervisor: Prof. RNDr. Bohdan Maslowski, DrSc., Department of Probability and Mathematical Statistics Abstract: Stochastic partial differential equations of second order with two un- known parameters are studied. The strongly continuous semigroup (S(t), t ≥ 0) for the hyperbolic system driven by Brownian motion is found as well as the formula for the covariance operator of the invariant measure Q (a,b) ∞ . Based on ergodicity, two suitable families of minimum contrast estimators are introduced and their strong consistency and asymptotic normality are proved. Moreover, another concept of estimation using "observation window" is studied, which leads to more families of strongly consistent estimators. Their properties and special cases are descibed as well as their asymptotic normality. The results are applied to the stochastic wave equation perturbed by Brownian noise and illustrated by several numerical simula- tions. Keywords: Stochastic hyperbolic equation, Ornstein-Uhlenbeck process, invariant measure, paramater estimation, strong consistency, asymptotic normality.
Parameter Estimation in Stochastic Differential Equations
Pacák, Daniel ; Maslowski, Bohdan (advisor) ; Hlubinka, Daniel (referee)
In the Thesis the problem of estimating an unknown parameter in a stochastic dif- ferential equation is studied. Linear equations with Volterra process as the source of noise are considered. Firstly, the properties of Volterra processes and the properties of stochastic integral with respect to a Volterra process are presented. Secondly, the prop- erties of the solution to the equation under consideration are discussed. This includes the existence of the strictly stationary solution, the properties of such solution and ergodic results. These results are then generalized to equations with a mixed noise. Ergodic results are used to derive strongly consistent estimators of the unknown parameter. 1
Parameter estimation for Ornstein-Uhlenbeck process
Martinková, Sandra ; Kříž, Pavel (advisor) ; Maslowski, Bohdan (referee)
The Ornstein-Uhlenbeck process has countless practical applications most of which rely on having previously estimated the drift parameter. The literature offers two basic estima- tors - the least-squares estimator, which coincides with the maximum-likelihood estimator for Ornstein-Uhlenbeck process, and the method-of-moments estimator. However, the sim- ilarity in asymptotic properties of these estimators means that choosing which one to use is more of a random guess than an educated decision. This thesis focuses on finding dif- ferences between the two estimators when applied to the Ornstein-Uhlenbeck trajectories generated in R. The simulation study performed suggests that the method-of-moments is better suited when the initial condition is close to zero even if the observations are col- lected sparsely. On the other hand, the precision of the least-squares estimator is better when the initial condition is further away from zero, but it still requires having dense data points. Under the conditions of this study, the least-squares estimator performs better compared to the method-of-moments if the absolute value of the initial condition is large. On the other hand, the method-of-moments is superior in cases where we have infrequent observations and long time horizon.
Stochastic Differential Equations with Gaussian Noise
Janák, Josef ; Maslowski, Bohdan (advisor)
Title: Stochastic Differential Equations with Gaussian Noise Author: Josef Janák Department: Department of Probability and Mathematical Statistics Supervisor: Prof. RNDr. Bohdan Maslowski, DrSc., Department of Probability and Mathematical Statistics Abstract: Stochastic partial differential equations of second order with two un- known parameters are studied. The strongly continuous semigroup (S(t), t ≥ 0) for the hyperbolic system driven by Brownian motion is found as well as the formula for the covariance operator of the invariant measure Q (a,b) ∞ . Based on ergodicity, two suitable families of minimum contrast estimators are introduced and their strong consistency and asymptotic normality are proved. Moreover, another concept of estimation using "observation window" is studied, which leads to more families of strongly consistent estimators. Their properties and special cases are descibed as well as their asymptotic normality. The results are applied to the stochastic wave equation perturbed by Brownian noise and illustrated by several numerical simula- tions. Keywords: Stochastic hyperbolic equation, Ornstein-Uhlenbeck process, invariant measure, paramater estimation, strong consistency, asymptotic normality.
Stochastic Differential Equations with Gaussian Noise
Janák, Josef ; Maslowski, Bohdan (advisor) ; Duncan, Tyrone E. (referee) ; Pawlas, Zbyněk (referee)
Title: Stochastic Differential Equations with Gaussian Noise Author: Josef Janák Department: Department of Probability and Mathematical Statistics Supervisor: Prof. RNDr. Bohdan Maslowski, DrSc., Department of Probability and Mathematical Statistics Abstract: Stochastic partial differential equations of second order with two un- known parameters are studied. The strongly continuous semigroup (S(t), t ≥ 0) for the hyperbolic system driven by Brownian motion is found as well as the formula for the covariance operator of the invariant measure Q (a,b) ∞ . Based on ergodicity, two suitable families of minimum contrast estimators are introduced and their strong consistency and asymptotic normality are proved. Moreover, another concept of estimation using "observation window" is studied, which leads to more families of strongly consistent estimators. Their properties and special cases are descibed as well as their asymptotic normality. The results are applied to the stochastic wave equation perturbed by Brownian noise and illustrated by several numerical simula- tions. Keywords: Stochastic hyperbolic equation, Ornstein-Uhlenbeck process, invariant measure, paramater estimation, strong consistency, asymptotic normality.

Interested in being notified about new results for this query?
Subscribe to the RSS feed.